CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 151

[AMBO02] Ambler, S., and R. Jeffries, Agile Modeling, Wiley, 2002.

[BEN99] Bentley, J., Programming Pearls, 2nd ed., Addison-Wesley, 1999.

[BOE96] Boehm, B., “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, July 1996,
pp. 73-82.

[BOHO0] Bohl, M., and M. Rynn, Tools for Structured Design: An Introduction to Programming
Logic, 5th ed., Prentice-Hall, 2000.

[DAV95] Davis, A., 201 Principles of Software Development, McGraw-Hill, 1995.

[FOW99] Fowler, M., et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[GAR95] Garlan, D., and M. Shaw, “An Introduction to Software Architecture,” Advances in Soft-
ware Engineering and Knowledge Engineering, vol. 1 (V. Ambriola and G. Tortora, eds.), World
Scientific Publishing Company, 1995.

{HIGOO] Highsmith, J., Adaptive Software Development: An Evolutionary Approach to Managing
Complex Systems, Dorset House Publishing, 2000.

[HOO96] Hooker, D., “Seven Principles of Software Development,” September 1996, available at
hitp://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment.

[HUN95] Hunt, D, A. Bailey, and B. Taylor, The Art of Facilitation, Perseus Book Group, 1995.

[HUN99] Hunt, A, D. Thomas, and W. Cunningham, The Pragmatic Programmer, Addison-
Wesley, 1999.

JUS99] justice, T., et al., The Facilitator’s Fieldbook, AMACOM, 1999.

[KAN93] Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed., Van Nostrand-
Reinhold, 1993.

[KAN96] Kaner, S., et al., The Facilitator's Guide to Preparatory Decision Making, New Society Pub-
lishing, 1996.

[KAR94] Karten, N., Managing Expectations, Dorset House, 1994.

[KER78] Kernighan, B., and P. Plauger, The Elements of Programming Style, 2nd ed., McGraw-Hill,
1978.

[KNU98] Knuth, D., The Art of Computer Programming, 3 volumes, Addison-Wesley, 1998.

[MCC93] McConnell, S., Code Complete, Microsoft Press, 1993.

[MCC97] McConnell, S., “Software’s Ten Essentials,” IEEE Software, vol. 14, no. 2, March/April,
1997, pp. 143-144.

[MYE78] Myers, G., Composite Structured Design, Van Nostrand, 1978.

[MYE79] Myers, G., The Art of Software Testing, Wiley, 1979.

[PAR72] Parnas, D. L., “On Criteria to Be Used in Decomposing Systems into Modules,” CACM,
vol. 14, no. 1, April 1972, pp. 221-227.

[POL45] Polya, G., How to Solve It, Princeton University Press, 1945.

[ROS75] Ross, D., J. Goodenough, and C. Irvine, “Software Engineering: Process, Principles and
Goals,” IEEE Computer, vol. 8, no. 5, May 1975.

[SHA95a)] Shaw, M., and D. Garlan, “Formulations and Formalisms in Software Architecture,” Vol-
ume 1000—Lecture Notes in Computer Science, Springer-Verlag, 1995.

[SHA95b] Shaw, M., et al., “Abstractions for Software Architecture and Tools to Support Them,”
IEEE Trans. Software Engineering, vol. SE-21, no. 4, April 1995, pp. 314-335.

[STE74] Stevens, W., G. Myers, and L. Constantine, “Structured Design,"” IBM Systems Journal,
vol. 13, no. 2, 1974, pp. 115-139.

[TAY90] Taylor, D. A., Object-Oriented Technology: A Manager's Guide, Addison-Wesley, 1990.

[ULL97] Ullman, E., Close to the Machine: Technophilia and its Discontents, City Lights Books, 1997.

[WIR71] Wirth, N., “Program Development by Stepwise Refinement,” CACM, vol. 14, no. 4, 1971,
pp. 221-227.

[WO095] Wood, J., and D. Silver, joint Application Design, Wiley, 1995.

[ZAH90] Zahniser, R. A., “Building Software in Groups,” American Programmer, vol. 3, nos. 7-8,
July-August 1990.

152

PART TWO SOFTWARE ENGINEERING PRACTICE

5.1. Do some research of “facilitation” for the communication activity (use the references pro-
vided or others) and prepare a set of guidelines that focus solely on facilitation.

5.2. Are there other technical “essentials” that might be recommended for software engineer-
ing? State each and explain why you've included it.

5.3. Are there other management “essentials” that might be recommended for software engi-
neering? State each and explain why you've included it.

5.4. An important communication principle states “prepare before you communicate.” How
should this preparation manifest itself in the early work that you do? What work products might
result as a consequence of early preparation?

5.5. What three “domains” are considered during analysis modeling?

5.6. Do some research on “negotiation” for the communication activity, and prepare a set of
guidelines that focus solely on negotiation.

5.7. Describe what granularity means in the context of a project schedule.

5.8. How does agile communication differ from tradition software engineering communica-
tion? How is it similar?

5.9. Why is it necessary to “move on"?

5.10. Why are models important in software engineering work? Are they always necessary?
Are there qualifiers to your answer about necessity?

5.11. Try to summarize David Hooker’s “Seven Principles for Software Development” (Section
5.1) in a brief paragraph. Try to distill his guidance into just a few sentences without using his
words.

5.12. Try to add one additional principle to those stated for coding in Section 5.6.
5.13. Why is feedback important to the software team?

5.14. Do you agree or disagree with the following statement: “Since we deliver muitiple incre-
ments to the customer, why should we be concerned about quality in the early increments—we
can fix problems in later iterations"? Explain your answer.

5.15. What is a successful test?

Customer communication is a critically important activity in software engineering, yet few prac-
titioner’s spend any time reading about it. Books by Pardee (To Satisfy and Delight Your Customer,
Dorset House, 1996) and Karten [KAR94] provide much insight into methods for effective cus-
tomer interaction. Communication and planning concepts and principles are considered in
many project management books. Useful project management offerings include: Hughs and
Cotterell (Software Project Management, second edition, McGraw-Hill, 1999), Phillips (The Soft-
ware Project Manager’s Handbook, IEEE Computer Society Press, 1998), McConnell (Software
Project Survival Guide, Microsoft Press, 1998), and Gilb (Principles of Software Engineering Man-
agement, Addison-Wesley, 1988).

Virtually every book on software engineering contains a useful discussion on concepts and
principles for analysis, design and testing. Among the better offerings are books by Endres and
his colleagues (Handbook of Software and Systems Engineering, Addison-Wesley, 2003), Som-
merville (Software Engineering, sixth edition, Addison Wesley, 2000), Pfleeger (Software Engi-
neering: Theory and Practice, Prentice-Hall, 2001) and Schach (Object-Oriented and Classical

CHAPTER 5 SOFTWARE ENGINEERING PRACTICE 153

Software Engineering, McGraw-Hill, 2001). An excellent collection of software engineering prin-
ciples has been compiled by Davis [DAV95].

Modeling concepts and principles are considered in many books dedicated to requirements
analysis and/or software design. Young (Effective Requirements Practices, Addison-Wesley, 2001)
emphasizes a “joint team” of customers and developers who develop requirements collabora-
tively. Weigers (Software Requirements, Microsoft Press, 1999) presents many key requirements
engineering and requirements management practices. Somerville and Kotonya (Requirements
Engineering: Processes and Techniques, Wiley, 1998) discuss “elicitation” concepts and tech-
niques and other requirements engineering principles.

Norman's (The Design of Everyday Things, Currency/Doubleday, 1990) is must reading for
every software engineer who intends to do design work. Winograd and his colleagues (Bringing
Design to Software, Addison-Wesley, 1996) have edited an excellent collection of essays that ad-
dress practical issues for software design. Constantine and Lockwood (Software for Use, Addi-
son-Wesley, 1999) present the concepts associated with “user-centered design.” Tognazzini (Tog
on Software Design, Addison-Wesley, 1995) presents a worthwhile philosophical discussion of
the nature of design and the impact of decisions on quality and a team’s ability to produce soft-
ware that provides great value to its customer.

Hundreds of books address one or more elements of the construction activity. Kernighan and
Plauger [KER78] have written a classic text on programming style, McConnell [MCC93] presents
pragmatic guidelines for practical software construction, Bentley [BEN99] suggests a wide vari-
ety of programming pearls, Knuth [KNU98] has written a classic three-volume series on the art
of programming, and Hunt [HUN99] suggests pragmatic programming guidelines. The testing
literature has blossomed over the past decide. Myers [MYE79] remains a classic. Books by Whit-
taker (How to Break Software, Addison-Wesley, 2002), Kaner and his colleagues (Lessons Learned
in Software Testing, Wiley, 2001), and Marick (The Craft of Soflware Testing, Prentice-Hall, 1997)
each present important testing concepts and principles and much pragmatic guidance.

A wide variety of information sources on software engineering practice are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to software engi-
neering practice can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

KEey

CONCEPTS

BPE

macro eloments

product engiaeeriog

system:
architecture
characteristics
elements
hierarchy
modeling
simulation

templates

UML models

SYSTEM
ENGINEERING

Imost 500 years ago, Machiavelli said, “There is nothing more difficult to

take in hand, more perilous to conduct or more uncertain in its success,

than to take the lead in the introduction of a new order of things.” Dur-
ing the past 50 years, computer-based systems have introduced a new order. Al-
though technology has made great strides since Machiavelli spoke, his words
continue to ring true.

Software engineering occurs as a consequence of a process called system en-
gineering. Instead of concentrating solely on software, system engineering fo-
cuses ‘on a variety of elements, analyzing, designing, and organizing those
elements into a system that can be a product, a'service, or a technology for the
transformation of information or control. .

The system engineering process takes on different forms depending on the
application domain in which it is applied. Business process engineering is con-
ducted when the context of the work focuses on a business enterprise. When a
product (in this context, a product includes everything from a wireless tele-
phone to an air traffic control system) is to be built, the process is called prod-
uct engineering.

Both business process engineering and product engineering attempt to bring
order to the development of computer-based systems. Although each is applied
in a different application domain, both strive to put software into context. That is,

text, the “forest” is the system, and the frees are
the technology elements {including software) that
are required fo realize the system. If you rush to
chnology elements before you understand
yeu’ﬁ undoubiediy make mistakes

Why is it mportenl’? Mz an
"Youcan’fseelhefomstfqrﬂre

154

CHAPTER 6 SYSTEM ENGINEERING 1585

both business process engineering and product engineering' work to allocate a role
for computer software and, at the same time, to establish the links that tie software
to other elements of a computer-based system.

In this chapter, we focus on the management issues and the process-specific ac-
tivities that enable a software organization to ensure that it does the right things at
the right time in the right way.

The word system is possibly the most overused and abused term in the technical lex-
icon. We speak of political systems and educational systems, of avionics systems and
manufacturing systems, of banking systems and subway systems. The word tells us
little. We use the adjective describing system to understand the context in which the
word is used. Webster’s Dictionary defines system in the following way:

1. a set or arrangement of things so related as to form a unity or organic whole; 2. a set
of facts, principles, rules, etc., classified and arranged in an orderly form so as to show a
logical plan linking the various parts; 3. a method or plan of classification or arrange-
ment; 4. an established way of doing something; method; procedure

Five additional definitions are provided in the dictionary, yet no precise synonym is
suggested. System is a special word. Borrowing from Webster's definition, we define
a computer-based system as

A set or arrangement of elements that are organized to accomplish some predefined goal
by processing information.

The goal may be to support some business function or to develop a product that can
be sold to generate business revenue. To accomplish the goal, a computer-based
system makes use of a variety of system elements:

Software. Computer programs, data structures, and related work products that
serve to effect the logical method, procedure, or control that is required.

I In reality, the term system engineering is often used in this context. However, for the purposes of
this book system engineering is generic and is used to encompass both business process engi-
neering and product engineering.

enpvm:’

Don’t be lured into
taking a “software-
centric” view. Begin by
considering ofl
elements of a system
before you concentrate
on software.

>
%o

POINT
Complex systems are
actually a hierarchy of
macro elements that
are themselves
systems. -

PART TWO SOFTWARE ENGINEERING PRACTICE

Hardware. Electronic devices that provide computing capability, the intercon-
nectivity devices (e.g., network switches, telecommunications devices) that enable
the flow of data, and electromechanical devices (e.g., sensors, motors, pumps) that
provide external world function.

People. Users and operators of hardware and software.

Database. A large, organized collection of information that is accessed via
software and persists over time.

Documentation. Descriptive information (e.g., models, specifications, hard-
copy manuals, on-line help files, Web sites) that portrays the use and/or operation
of the system.

Procedures. The steps that define the specific use of each system element or
the procedural context in which the system resides.

These elements combine in a variety of ways to transform information. For ex-
ample, a marketing department transforms raw sales data into a profile of the typi-
cal purchaser of a product; a robot transforms a command file containing specific
instructions into a set of control signals that cause some specific physical action.
Creating an information system to assist the marketing department and control soft-
ware to support the robot both require system engineering.

T tewm you con't throw out o window.”

One complicating characteristic of computer-based systems is that the elements
constituting one system may also represent one macro element of a still larger system.
The macro element is a computer-based system that is one part of a larger computer-
based system. As an example, we consider a factory automation system that is essen-
tially a hierarchy of systems. At the lowest level of the hierarchy we have a numerical
control machine, robots, and data entry devices. Each is a computer-based system in
its own right. The elements of the numerical control machine include electronic and
electromechanical hardware (e.g., processor and memory, motors, sensors), software
(for communications and machine control), people (the machine operator), a database
(the stored NC program), documentation, and procedures. A similar decomposition
could be applied to the robot and data entry device. Each is a computer-based system.

At the next level in the hierarchy, a manufacturing cell is defined. The manufac-
turing cell is a computer-based system that may have elements of its own (e€.g., com-
puters, mechanical fixtures) and also int>grates the macro elements that we have
called numerical control machine, robot, and data entry device.

To summarize, the manufacturing cell and its macro elements each are composed
of system elements with the generic labels: software, hardware, people, database,
procedures, and documentation. In some cases, macro elements may share a
generic element. For example, the robot and the NC machine both might be managed

The International
Council of System
Engineering (INCOSE)
provides many useful
Tesources ot
www.incose.org

%N
e,
POINT
Good system
engineering begins
with a clear
understanding of
context—the world
view—and then
progressively namows
focus unfil technical
detail is understood.

CHAPTER 6 SYSTEM ENGINEERING . 157

by a single operator (the people element). In other cases, generic elements are ex-
clusive to one system.

The role of the system engineer is to define the elements for a specific computer-
based system in the context of the overall hierarchy of systems (macro elements). In
the sections that follow, we examine the tasks that constitute computer system en-
gineering.

Regardless of its domain of focus, system engineering encompasses a collection of
top-down and bottom-up methods to navigate the hierarchy illustrated in Figure 6.1.
The system engineering process usually begins with a “world view.” That is, the en-
tire business or product domain is examined to ensure that the proper business or
technology context can be established. The world view is refined to focus more fully
on a specific domain of interest. Within a specific domain, the need for targeted sys-
tem elements (e.g., data, software, hardware, people) is analyzed. Finally, the analy-
sis, design, and construction of a targeted system element is initiated. At the top of
the hierarchy, a very broad context is established and, at the bottom, detailed tech-
nical activities, performed by the relevant engineering discipline (e.g., hardware or
software engineering), are conducted.?

Stated in a slightly more formal manner, the world view (WV) is composed of a set
of domains (D)), which can each be a system or system of systems in its own right.

WV = (D, D,, D, ..., Dy}

Each domain is composed of specific elements (Ej) each of which serves some role in
accomplishing the objective and goals of the domain or component:

D;=(E}, E; Es ..., Ep}

Finally, each element is implemented by specifying the technical components (Cy)
that achieve the necessary function for an element:

E=1(C, Cy Cs ..., G

In the software context, a component could be a computer program, a reusable pro-
gram component, a module, a class or object, or even a programming language
statement.

: design a thing by considering it in its next larger confext—a chair in o room, a room in o hm, &h&
envisonment, an environment in a city plan.”

2 Insome situations, however, system engineers must first consider individual system elements. Us-
ing this approach, subsystems are described bottom-up by first considering constituent detailed
components of the subsystem.

158 PART TWO SOFTWARE ENGINEERING PRACTICE

The system Bgsine S or
engjneenng pro uct domain World view
hierarchy

Domain of interest

HERIEECNIEEE

HENEEN

Element view

Detailed view

It is important to note that the system engineer narrows the focus of work as
she moves downward in the hierarchy just described. However, the world view
portrays a clear definition of overall functionality that will enable the engineer to
understand the domain, and ultimately the system or product, in the proper
context.

6.2.1 System Modeling

System modeling is an important element of the system engineering process.
Whether the focus is on the world view or the detailed view, the engineer creates
models that [MOT92]:

E: What does a o Define the processes that serve the needs of the view under consideration.

sys.tem ¢ Represent the behavior of the processes and the assumptions on which the
engmeefmg model behavior is based.
accomplish?

Explicitly define both exogencus and endogenous input® to the model.

e Represent all linkages (including output) that will enable the engineer to
better understand the view.

3 Exogenous inputs link one constituent of a given view with other constituents at the same level or
other levels; endogenous input links individual components of a constituent at a particular view.

(/>
L ¢

POINT

A system engineer
considers the following
factors when
defermining alfemative
solutions: assumptions,
simplifications,
fimitations, constraints,
and customer
preferences.

CHAPTER 6 SYSTEM ENGINEERING . 159

To construct a system model, the engineer should consider a riumber of restraining
factors:

1.

Assumptions that reduce the number of possible permutations and variations,
thus enabling a model to reflect the problem in a reasonable manner. As an ex-
ample, consider a three-dimensional rendering product used by the entertain-
ment industry to create realistic animation. One domain of the product enables
the representation of 3D human forms. Input to this domain encompasses the
ability to specify movement from a live human actor, from video, or by the cre-
ation of graphical models. The system engineer makes certain assumptions
about the range of allowable human movement (e.g., legs cannot be wrapped
around the torso) so that the range of inputs and processing can be limited.

Simplifications that enable the model to be created in a timely manner. To il-
lustrate, consider an office products company that sells and services a broad
range of copiers, scanners, and related equipment. The system engineer is
modeling the needs of the service organization and is working to understand
the flow of information that spawns a service order. Although a service order
can be derived from many origins, the engineer categorizes only two
sources: internal demand and external request. This enables a simplified par-
titioning of input that is required to generate the service order.

Limitations that help to bound the system. For example, an aircraft avionics
system is being modeled for a next generation aircraft. Since the aircraft has a
two-engine design, the monitoring domain for propulsion will be modeled to
accommodate a maximum of two engines and associated redundant systems.

Constraints that will guide the manner in which the model is created and the
approach taken when the model is implemented. For example, the technol-
ogy infrastructure for the three-dimensional rendering system described pre-
viously uses dual G5-based processors. The computational complexity of
problems must be constrained to fit within the processing bounds imposed
by these processors.

Preferences that indicate the preferred architecture for all data, functions, and
technology. The preferred solution sometimes comes into conflict with other
restraining factors. Yet, customer satisfaction is often predicated on the de-
gree to which the preferred approach is realized.

The resultant system model (at any view) may call for a completely automated solu-
tion, a semiautomated solution, or a nonautomated approach. In fact, it is often pos-
sible to characterize models of each type that serve as alternative solutions to the
problem at hand. In essence, the system engineer simply modifies the relative influ-
ence of different system elements (people, hardware, software) to derive models of
each type.

160 PART TWO SOFTWARE ENGINEERING PRACTICE

s should be simple. Complex things should be possible.”

6.2.2 System Simulation

Cova$

Many computer-based systems interact with the real world in a reactive fashion.

gmﬁmﬁgf s;lny That is, real-world events are monitored by the hardware and software that form the
reactve system, computer-based system, and based on these events, the system imposes control on
project risk increases. the machines, processes, and even people who cause the events to occur. Real-time
_fDﬂSfdef using an and embedded systems often fall into the reactive systems category.

:gzgg;:g’ v‘/]irl‘l):;vsijle Many systems in the reactive category control machines and/or processes
you to delver a (e.g., commercial aircraft or petroleum refineries) that must operate with an
working product in the ~ €xtremely high degree of reliability. If the system fails, significant economic or

first iteration ond then
use other iterations fo
fune performance.

human loss could occur. For this reason, system modeling and simulation tools
are used to help eliminate surprises when reactive, computer-based systems are
built. These tools are applied during the system engineering process, while the
role of hardware and software, databases, and people is being specified. Model-
ing and simulation tools enable a system engineer to “test drive” a specification of

the system.

System Simulation Tools

"
Q Objective: System simulation tools provide
the software engineer with the ability to predict

the behavior of a real-time system prior to the time that
it is built. In addition, these tools enable the software
engineer to develop mock-ups of the real-time system,
allowing the customer to gain insight into the function,
operation, and response prior to actual
implementation.

Mechanics: Tools in this category allow a team fo define
the elements of a computer-based system and then
execute a variety of simulations to better understand
the operating characteristics and overall performance
of the system. Two broad categories of system
simulation tools exist: (1) general purpose tools that
can model virtually any computer-based system, and

\(2) special purpose tools that are designed to address

SOFTWARE TooLs
a specific application domain (e.g., aircraft avionics

systems, manufacturing systems, electronic-systems).

Representative Tools*®

CSIM, developed by Lockheed Martin Advanced
Technology Labs {www.atl.external.lmco.com), is a
generc| purpose discrete-event simulator for block
diagram-oriented systems.

Simics, developed by Virtutech (www.virtutech.com), is a
system simulation platform that can model and analyze
both hardware and software-based systems.

SLX, developed by Wolverine Software
(www.wolverinesoftware.com), provides general
purpose building blocks for modeling the performance
of a wide variety of systems.

A useful set of links to a wide array of system simulation
resources can be found at
http:/ /www.idsia.ch/ ~andrea/simtools. html.

J

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

CHAPTER 6 SYSTEM ENGINEERING 161

What
architectures
are defined and

developed as part
of BPE?

Cova

As a software
engineer, you may
never get involved in
ISP or BAA. However,
ifit's clear that these
activities haven’t been
done, inform stoke-
holders that project
risk is very high.

The goal of business process engineering (BPE) is to define architectures that will en-
able a business to use information effectively. When taking a world view of a com-
pany’s information technology needs, there is little doubt that system engineering is
required. Not only is the specification of the appropriate computing architecture re-
quired, but the software architecture that populates the organization’s unique con-
figuration of computing resources must be developed. Business process engineering
is one approach for creating an overall plan for implementing the computing archi-
tecture [SPE93].

Three different architectures must be analyzed and designed within the context
of business objectives and goals:

¢ Data architecture
e Applications architecture

e Technology infrastructure

The data architecture provides a framework for the information needs of a business
or business function. The individual building blocks of the architecture are the data
objects that are used by the business. A data object contains a set of attributes that
define some aspect, quality, characteristic, or descriptor of the data that are being
described.

Once a set of data objects is defined, their relationships are identified. A relation-
ship indicates how objects are connected to one another. As an example, consider
the objects: customer and productA. The two objects can be connected by the re-
lationship purchases; that is, a customer purchases productA or productA s pur-
chased by customer. The data objects (there may be hundreds or even thousands
for a major business activity) flow between business functions, are organized within
a database, and are transformed to provide information that serves the needs of the
business.

The application architecture encompasses those elements of a system that
transform objects within the data architecture for some business purpose. In the
context of this book, we consider the application architecture to be the system of
programs (software) that performs this transformation. However, in a broader
context, the application architecture might incorporate the role of people (who are
information transformers and users) and business procedures that have not been
automated.

The technology infrastructure provides the foundation for the data and application
architectures. The infrastructure encompasses the hardware and software that are
used to support the applications and data. This includes computers, operating sys-
tems, networks, telecommunication links, storage technologies, and the architec-
ture (e.g., client/server) that has been designed to implement these technologies.

162

PART TWO SOFTWARE ENGINEERING PRACTICE

The business
process
engineering
hierarchy
[MAR90]

Q'Anwcs’

The concurrent process
model (Chapter 3) is
often used in this
context. Fach engF
neering discipline
works in parallel. Be
cerfain that commun-
cation is encouraged as
each discipline
performs ifs work.

Informc;hon
strateg anning
(wor dP view)

The enterprise

Business area /I\

A business area

Business
area analysis
(domain view)

[11

[1]
_

Processing requirement

" |Business system
esign
(element view)

Software
[engineer

Construction

Hmmmmdeﬂ:

ruhon
ed view)

To model these system architectures, a hierarchy of business process engineering
activities is defined and illustrated in Figure 6.2.

The goal of product engineering is to translate the customer’s desire for a set of de-
fined capabilities into a working product. To achieve this goal, product engineering—
like business process engineering—must derive architecture and infrastructure. The
architecture encompasses four distinct system components: software, hardware,
data (and databases), and people. A support infrastructure is established and in-
cludes the technology required to tie the components together and the information
(e.g., documents, CD-ROM, video) that is used to support the components.
Referring to Figure 6.3, the world view is achieved through requirements engineer-
ing (Chapter 7). The overall requirements of the product are elicited from the customer.
These requirements encompass information and control needs, product function and
behavior, overall product performance, design and interfacing constraints, and other
special needs. Once these requirements are known, the job of requirements engineer-
ing is to allocate function and behavior to each of the four components noted earlier.
Once allocation has occurred, system component engineering commences. Sys-
tem component engineering is actually a set of concurrent activities that address
each of the system components separately: software engineering, hardware engi-
neering, human engineering, and database engineering. Each of these engineering

CHAPTER 6 SYSTEM ENGINEERING

The product The complete Requirem
engineering product engineer
hierarchy (world vi
—
CGpriIiﬁeS /'\
Hardware Software Component
engineering
(domain view)
| [] H HIEEN
. ~
Processing requirement
Analysis & design -
mrr — e modeling
~‘Dadta : Behavior | (element view)
[1 [|1
Program
component Software
engineer

P e
hon

(del'a d view) |

disciplines takes a domain-specific view, but it is important to note that the engi-
neering disciplines must establish and maintain active communication with one an-
other. Part of the role of requirements engineering is to establish the interfacing
mechanisms that will enable this to happen.

The element view for product engineering is the engineering discipline itself ap-
plied to an allocated component. For software engineering, this means analysis and
design modeling activities (covered in detail in later chapters) and construction and
deployment activities that encompass code generation, testing, and support tasks.
The analysis task models allocated requirements into representations of data, func-
tion, and behavior. Design maps the analysis model into data, architectural, inter-
face, and software component-level designs.

SAFEHOME

164 PART TWO SOFTWARE ENGINEERING PRACTICE

S

Home survaillqnoe fu

Because a system can be represented at different levels of abstraction (e.g., the
world view, the domain view, the element view), system models tend to be hierar-
chical or layered in nature. At the top of the hierarchy, a model of the complete
system is presented (the world view). Major data objects, processing functions,

%
POINT
The Hatley-Pirbhai
model depicts input,
processing, and output
glong with the user
interfoce and
mainfenance,/self-test.

CHAPTER 6 SYSTEM ENGINEERING 165

and behaviors are represented without regard to the system component that will
implement the elements of the world view model. As the hierarchy is refined or
layered, component-level detail (in this case, representations of hardware, soft-
ware, and so on) is modeled. Finally system models evolve into engineering mod-
els (which are further refined) that are specific to the appropriate engineering
discipline.

6.5.1 Hatley-Pirbhai Modeling

Every computer-based system can be modeled as an information transform using an
input-processing-output template. Hatley and Pirbhai [HAT87] have extended this
view to include two additional system features—user interface processing and main-
tenance and self-test processing. Although these additional features are not present
for every computer-based system, they are very common, and their specification
makes any system model more robust.

Using a representation of input, processing, output, user interface processing, and
self-test processing, a system engineer can create a model of system components
that sets a foundation for later steps in each of the engineering disciplines.

To develop the system model, a system model template [HAT87] is used. The Sys-
tem engineer allocates system elements to each of five processing regions within the
template: (1) user interface, (2) input, (3) system function and control, (4) output, and
(5) maintenance and self-test.

Like nearly all modeling techniques used in system and software engineering, the
system model template enables the analyst to create a hierarchy of detail. A system
context diagram (SCD) resides at the top level of the hierarchy. The context diagram
“establishes the information boundary between the system being implemented and
the environment in which the system is to operate” [HAT87). That is, the SCD defines
all external producers of information used by the system, all external consumers of
information created by the system, and all entities that communicate through the in-
terface or perform maintenance and self-test.

To illustrate the use of the SCD, consider a conveyor line sorting system (CLSS)
described with the following (somewhat nebulous) statement of objectives:

CLSS must be developed such that boxes moving along a conveyor line will be identified
and sorted into one of six bins at the end of the line. The boxes will pass by a sorting sta-
tion where they will be identified. Based on an identification number printed on the side
of the box and a bar code, the boxes will be shunted into the appropriate bins. Boxes pass
in random order and are evenly spaced. The line is moving slowly.

A desk-top computer located at the sorting station executes all CLSS software, inter-
acts with the bar-code reader to read part numbers on each box, interacts with the con-
veyor line monitoring equipment to acquire conveyor line speed, stores all part numbers
sorted, interacts with a sorting station operator to produce a variety of reports and diag-
nostics, sends control signals to the shunting hardware to sort the boxes, and communi-
cates with a central factory automation system.

166

PART TWO SOFTWARE ENGINEERING PRACTICE

System context
diagram for
CLSS

User Sortin I
interface 'ng
rocessin station
P 9 operator
Request Queries Shulnt
Bar code W ST e commundi Sorting
reader Bar &CGHVOYOI' ’ | mechanism
Code iy)h';”“ S
; mg '« Formatted reporting data
| System
Conveyor .
|iney »! Mainframe
Line speed Diagnostic data
indicator
Maintenance Sorting
and station
Input selftest operator Output
processing processing
. L __

The SCD for CLSS is shown in Figure 6.4. The diagram is divided into five major
segments. The top segment represents user interface processing, and the left and
right segments depict input and output processing, respectively. The central seg-
ment contains process and control functions, and the bottom segment focuses on
maintenance and self-test. Each box shown in the figure represents an external en-
tity—that is, a producer or consumer of system information. For example, the bar-
code reader produces information that is input to the CLSS system. The symbol for
the entire system (or, at lower levels, major subsystems) is a rectangle with
rounded corners. Hence, CLSS is represented in the processing and control region
at the center of the SCD. The labeled arrows shown in the SCD represent infor-
mation (data and control) as it moves from the external environment into the CLSS
system. The external entity bar-code reader produces input information that is la-
beled bar code. In essence, the SCD places any system into the context of its ex-
ternal environment.

The system engineer refines the system context diagram by considering the
shaded rectangle in Figure 6.4 in more detail. The major subsystems that enable the
conveyor line sorting system to function within the context defined by the SCD are
identified. The major subsystems are defined in a system flow diagram (SFD) that is
derived from the SCD. Information flow across the regions of the SCD is used to guide
the system engineer in developing the SFD—a more detailed “schematic” for CLSS.
The system flow diagram shows major subsystems and important lines of informa-

CHAPTER 6 SYSTEM ENGINEERING 167

Building an
SFD hierarchy

Top-level archectecture flow diagram [AFD)

AFD for A

tion (data and control) flow. In addition, the system template partitions the subsys-
tem processing into each of the five regions discussed earlier. At this stage, each of
the subsystems can contain one or more system elements (e.g., hardware, software,
people) as allocated by the system engineer.

The initial system flow diagram becomes the top node of a hierarchy of SFDs. Each
rounded rectangie in the original SFD can be expanded into another architecture tem-
plate dedicated solely to it. This process is illustrated schematically in Figure 6.5. Each
of the SFDs for the system can be used as a starting point for subsequent engineering
steps for the subsystem that has been described.

Subsystems and the information that flows between them can be specified
(bounded) for subsequent engineering work. A narrative description of each subsys-
tem and a definition of all data that flow between subsystems become important el-
ements of the System Specification.

6.5.2 System Modeling with UML

UML provides a wide array of diagrams that can be used for analysis and design at both
the system and the software level.® For the CLSS system, four important system elements

5 A more detailed discussion of UML diagrams is presented in Chapters 8 through 11. For a compre-
hensive discussion of UML, the interested reader should see [SCHO2}, [LAROI1], or [BEN99].

168

PART TWO SOFTWARE ENGINEERING PRACTICE

Deployment
diagram

for CLSS
hardware

are modeled: (1) the hardware that enables CLSS; (2) the software that implements data-
base access and sorting; (3) the operator who submits various requests to the system;
and (4) the database that contains relevant bar code and destination information.

CLSS hardware can be modeled at the system level using a UML deployment dia-
gram as illustrated in Figure 6.6. Each 3-D box depicts a hardware element that is
part of the physical architecture of the system. In some cases, hardware elements
will have to be designed and built as part of the project. In many cases, however,
hardware elements can be acquired off-the-shelf. The challenge for the engineering
team is to properly interface the hardware elements.

Software elements for CLSS can be depicted in a variety of ways using UML.
Procedural aspects of CLSS software can be represented using an activity diagram
(Figure 6.7). This UML notation is similar to the flowchart and is used to represent
what happens as the system performs its functions. Rounded rectangles imply a spe-
cific system function; arrows imply flow through the system; the decision diamond
represents a branching decision (each arrow emanating from the diamond is la-
beled); solid horizontal lines imply that parallel activities are occurring.

Another UML notation that can be used to model software is the class diagram
(along with many class-related diagrams discussed later in this book). At the sys-
tem engineering level, classes® are extracted from a statement of the problem. For

6 In earlier chapters we noted that a class represents a set of entities that is part of the system do-
main. These entities can be transformed or stored by the system or can serve as a producer or con-
sumer of information produced by the system.

CHAPTER 6 SYSTEM ENGINEERING 169

Activity

diagram
for CLSS

Valid bar code Invalid bar code

Conveyor in motion

- O Conveyor stopped

the CLSS, candidate classes might be: Box, ConveyorLine, Bar-codeReader,
ShuntController, OperatorRequest, Report, Product, and others. Each class
encapsulates a set of attributes that depict all necessary information about the
class. A class description also contains a set of operations that are applied to the
class in the context of the CLSS system. A UML class diagram for Box is shown in
Figure 6.8.

The CLSS operator can be modeled with a UML use-case diagram as shown in
Figure 6.9. The use-case diagram illustrates the manner in which an actor (in this
case, the operator, represented by a stick figure) interacts with the system. Each la-
beled oval inside the box (which represents the CLSS system boundary) represents
one use-case—a text scenario that describes an interaction with the system.

170

PART TWO SOFTWARE ENGINEERING PRACTICE

UML class
diagram for
Box class

Class name

Attributes

Operations
(parentheses at end

of name indicate the
list of attributes that the
operation requires)

Use-case
diagram for

CLSS operator

CLSS operator

/\

Request sh unt
control status

CHAPTER 6 SYSTEM ENGINEERING

171

P System Modeling Tools
Q Objective: System modeling tools provide the
software engineer with the ability to model all
elements of a computer-based system using a notation
that is specific to the fool.

Mechanics: Tool mechanics vary. In general, tools in this
category enable a system engineer to model (1) the
structure of all functional elements of the system; {2) the
static and dynamic behavior of the system; and (3) the
human-machine interface.

Representative Tools” ,
Describe, developed by Embarcadero Technologies
W.embarcodero.com), is a suite of UML-based

SorTWARE TOOLS

modeling tools that can represent software or complete
systems.

Rational XDE and Rose, developed by Rational
Technologies (www.rational.com}, provide a widely used,
UML-based suite of modeling and development tools for
computer-based systems.

Real-Time Studiio, developed by Artisan Software
(www.artisansw.com), is a suite of modeling and
development tools that support real-time system development.

Telelogic Tau, developed by Telelogic (www.telelogic.
com), is a UML-based tool suite that supports analysis and
design modeling as well as links to software construction

features. /

. oy
A high-technology system encompasses a number of elements: software, hardware,
people, database, documentation, and procedures. System engineering helps to
translate a customer’s needs into a model of a system that makes use of one or more
of these elements.

System engineering begins by taking a “world view.” A business domain or prod-
uct is analyzed to establish all basic business requirements. Focus is then narrowed
to a “domain view,” where each of the system elements is analyzed individually. Each
element is allocated to one or more engineering components, which are then ad-
dressed by the relevant engineering discipline.

Business process engineering is a system engineering approach that is used to de-
fine architectures that enable a business to use information effectively. The intent of
business process engineering is to derive comprehensive data architecture, applica-
tion architecture, and technology infrastructure that will meet the needs of the busi-
ness strategy and the objectives and goals of each business area.

Product engineering is a system engineering approach that begins with system
analysis. The system engineer identifies the customer’s needs, determines economic
and technical feasibility, and allocates function and performance to software, hard-
ware, people, and databases—the key engineering components.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

172

PART TWO SOFTWARE ENGINEERING PRACTICE

[BEN99] Bennett, S., S. McRobb, and R. Farmer, Object-Oriented Systems Analysis and Design Us-
ing UML, McGraw-Hill, 1999.

[HAR93] Hares, J. S., Information Engineering for the Advanced Practitioner, Wiley, 1993, pp. 12-13.

[HAT87] Hatley, D.)., and I. A. Pirbhai, Strategies for Real-Time System Specification, Dorset House,
1987.

[LARO1] Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd ed., Prentice-Hall, 2001.

[MAR90] Martin, J., Information Engineering: Book ll—Planning and Analysis, Prentice-Hall, 1990.

[MOT92] Motamarri, S., “Systems Modeling and Description,” Software Engineering Notes, vol.
17, no. 2, April 1992, pp. 57-63.

[SCHO2] Schmuller, J., Teach Yourself UML in 24 Hours, 2nd ed., Sams Publishing, 2002.

[SPE93] Spewak, S., Enterprise Architecture Planning, QED Publishing, 1993.

[THA97] Thayer, R. H., and M. Dorfman, Software Requirements Engineering, 2nd ed., IEEE Com-
puter Society Press, 1997.

6.1. Select any large system or product with which you are familiar. Define the set of domains that
describe the world view of the system or product. Describe the set of elements that make up one
or two domains. For one element, identify the technical components that must be engineered.

6.2. Build a hierarchical “system of systems"” for a system, product, or service with which you
are familiar. Your hierarchy should extend down to simple system elements (hardware, soft-
ware, etc.) along at least one branch of the “tree.”

6.3. Although information at this point is very sketchy, try to develop one UML deployment di-
agram, activity diagram, class diagram, and use-case diagram for the SafeHome product.

6.4. Business process engineering strives to define data and application architecture as well as
technology infrastructure. Describe what each of these terms means and provide an example.

6.5. A system engineer can come from one of three sources: the system developer, the cus-
tomer, or some outside organization. Discuss the pros and cons that apply to each source. De-
scribe an “ideal” system engineer.

6.6. Your instructor will distribute a high-level description of a computer-based system or product:

a. Develop a set of questions that you should ask as a system engineer.

b. Propose at least two different allocations for the system based on answers to your
questions.

c. In class, compare your allocation to those of fellow students.

6.7. Select any large system or product with which you are familiar. State the assumptions,
simplifications, limitations, constraints, and preferences that would have to be made to build an
effective (and realizable) system model.

6.8. Research the literature and write a brief paper describing how modeling and simulation
tools work. Alternate: Collect literature from two or more vendors that sell modeling and sim-
ulation tools and assess their similarities and differences.

6.9. Find as many single-word synonyms for the word system as you can. Good luck!

6.10. Are there characteristics of a system that cannot be established during system engineer-
ing activities? Describe the characteristics, if any, and explain why a consideration of them must
be delayed until later engineering steps.

6.11. Develop a system context diagram for the computer-based system of your choice (or one
assigned by your instructor).

CHAPTER 6 SYSTEM ENGINEERING 173

6.12. Are there situations in which formal system specification can be abbreviated or elimi-
nated entirely? Explain.

Books by Hatley and his colleagues (Process for Systems Architecture and Requirements Engineering,
Dorset House, 2000), Buede (The Engineering Design of Systems: Models and Methods, Wiley, 1999),
Weiss and his colleagues (Software Product-Line Engineering, Addison-Wesley, 1999), Blanchard and
Fabrycky (System Engineering and Analysis, third edition, Prentice-Hall, 1998), Armstrong and Sage
(Introduction to Systems Engineering, Wiley, 1997), and Martin (Systems Engineering Guidebook, CRC
Press, 1996) present the system engineering process (with a distinct engineering emphasis) and
provide worthwhile guidance. Blanchard (System Engineering Management, second edition, Wiley,
1997) and Lacy (System Engineering Management, McGraw-Hill, 1992) discuss system engineering
management issues.

Chorafas (Enterprise Architecture and New Generation Systems, St. Lucie Press, 2001) presents
information engineering and system architectures for “next generation” IT solutions including
Internet-based systems. Wallnau and his colleagues (Building Systems from Commercial Compo-
nents, Addison-Wesley, 2001) addresses component-based systems engineering issues for in-
formation systems and products. Lozinsky (Enterprise-Wide Software Solutions: Integration
Strategies and Practices, Addison-Wesley, 1998) addresses the use of software packages as a so-
lution that allows a company to migrate from legacy systems to modern business processes. A
worthwhile discussion of risk and system engineering is presented by Bradley (Elimination of
Risk in Systems, Tharsis Books, 2002).

Davis (Business Process Modeling with Aris: A Practical Guide, Springer-Verlag, 2001), Bustard
and his colleagues (System Models for Business Process Improvement, Artech House, 2000), and
Scheer (Business Process Engineering: Reference Models for Industrial Enterprises, Springer-Verlag,
1998) describe business process modeling methods for enterprise-wide information systems.

Davis and Yen (The Information System Consultant’s Handbook: Systems Analysis and Design,
CRC Press, 1998) present encyclopedic coverage of system analysis and design issues in the in-
formation systems domain. An excellent IEEE tutorial by Thayer and Dorfman [THA97] dis-
cusses the interrelationship between system and software-level requirements analysis issues.

Law and his colleagues (Simulation Modeling and Analysis, McGraw-Hill, 1999) discuss sys-
tem simulation and modeling techniques for a wide variety of application domains.

For those readers actively involved in systems work or interested in a more sophisticated
treatment of the topic, Gerald Weinberg's books (An Introduction to General System Thinking,
Wiley-Interscience, 1976 and On the Design of Stable Systems, Wiley-Interscience, 1979) have be-
come classics and provide an excellent discussion of “general systems thinking” that implicitly
leads to a general approach to system analysis and design. More recent books by Weinberg
(General Principles of Systems Design, Dorset House, 1988 and Rethinking Systems Analysis and
Design, Dorset House, 1988) continue in the tradition of his earlier work.

A wide variety of information sources on system engineering and related subjects is avail-
able on the Internet. An up-to-date list of World Wide Web references that are relevant to sys-
tem engineering, information engineering, business process engineering, and product
engineering can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

analysis model
eclements

analysis patterns
elaboration
eficitation
inception
mini-specs
negotiation
QFD
requirements
management
speification
traceability
use-cases

validation

174

REQUIREMENTS
ENGINEERING

nderstanding the requirements of a problem is among the most difficult
tasks that face a software engineer. When you first think about it, re-
quirements engineering doesn’t seem that hard. After all, doesn't the cus-
tomer know what is required? Shouldn't the end-users have a good
understanding of the features and functions that will provide benefit? Surprisingly,
in many instances the answer to these questions is no. And even if customers and
end-users are explicit in their needs, those needs will change throughout the proj-
ect. Requirements engineering is hard.
In the forward to a book by Ralph Young [YOUO1] on effective requirements
practices, I wrote:

It’s your worst nightmare. A customer walks into your office, sits down, looks you
straight in the eye, and says, “I know you think you understand what I said, but what
you don't understand is what I said is not what I mean.” invariably, this happens late
in the project, after deadline commitments have been made, reputations are on the
line, and serious money is at stake.

All of us who have worked in the systems and software business for more than a
few years have lived this nightmare, and yet, few of us have learned to make it go away.
We struggle when we try to elicit requirements from our customers. We have trouble
understanding the information that we do acquire. We often record requirements in a

CHAPTER 7 REQUIREMENTS ENGINEERING 175

disorganized manner, and we spend far too little time verifying what we do record. We al-
low change to control us, rather than establishing mechanisms to control change. In short,
we fail to establish a solid foundation for the system or software. Each of these problems
is challenging. When they are combined, the outlook is daunting for even the most expe-
rienced managers and practitioners. But solutions do exist.

It would be dishonest to call requirements engineering the “solution” to the chal-
lenges noted above. But it does provide us with a solid approach for addressing these
challenges.

Designing and building computer software is challenging, creative, and just plain
fun. In fact, building software is so compelling that many software developers want
to jump right in before they have a clear understanding of what is needed. They ar-
gue that things will become clear as they build; that projeét stakeholders will be able
to better understand need only after examining early iterations of the software; that
things change so rapidly that requirements engineering is a waste of time; that the
bottom line is producing a working program and that all else is secondary. What -
makes these arguments seductive is that they contain elements of truth.' But each is
flawed, and all can lead to a failed software project.

%W single part of building o software system is deciding what fo build. Howrt of lbe m'll 501 iopl
- Fesui ﬁmi done wrong. No other partis more difficult to recify later.” .

Requirements engineering, like all other software engineering activities, must be
adapted to the needs of the process, the project, the product, and the people doing
the work. From a software process perspective, requirements engineering (RE) is a
software engineering action that begins during the communication activity and con-
tinues into the modeling activity.

In some cases, an abbreviated approach may be chosen. In others, every task de-
fined for comprehensive requirements engineering must be performed rigorously.

1 This is particularly true for small projects (less than one month) and smaller, relatively simple soft-
ware efforts. As software grows in size and complexity, these arguments begin to break down.

176

%
POINT
Requirements
engineering establishes
a solid base for design
and construction.
Without if, the
resulfing software has
a high probability of
not meefing
customers’ needs.

PART TWO SOFTWARE ENGINEERING PRACTICE

Overall, the software team must adapt its approach to RE. But adaptation does not
mean abandonment. 1t is essential that the software team make a real effort to under-
stand the requirements of a problem before the team attempts to solve the problem.
Requirements engineering builds a bridge to design and construction. But where
does the bridge originate? One could argue that it begins at the feet of the project
stakeholders (e.g., managers, customers, end-users), where business need is defined,
user scenarios are described, functions and features are delineated, and project con-
straints are identified. Others might suggest that it begins with a broader system defi-
nition, where software is but one component (Chapter 6) of the larger system domain.
But regardless of the starting point, the journey across the bridge takes us high above
the project, allowing the software team to examine the context of the software work
to be performed; the specific needs that design and construction must address; the pri-
orities that guide the order in which work is to be completed; and the information,
functions, and behaviors that will have a profound impact on the resultant design.

Cova

Expect to do a bit of
design during require-
ments work and bit
of requirements work
during design.

Requirements engineering provides the appropriate mechanism for understanding
what the customer wants, analyzing need, assessing feasibility, negotiating a rea-
sonable solution, specifying the solution unambiguously, validating the specifica-
tion, and managing the requirements as they are transformed into an operational
system [THA97]. The requirements engineering process is accomplished through the
execution of seven distinct functions: inception, elicitation, elaboration, negotiation,

- specification, validation, and management.

It is important to note that some of these requirements engineering functions oc-
cur in parallel and all are adapted to the needs of the project. All strive to define what
the customer wants, and all serve to establish a solid foundation for the design and
construction of what the customer gets.

7.2.1 Inception

How does a software project get started? Is there a single event that becomes the cat-
alyst for a new computer-based system or product, or does the need evolve over
time? There are no definitive answers to these questions.

disstos oo usually sown i the first hres monihs o e

In some cases, a casual conversation is all that is needed to precipitate a major
software engineering effort. But in general, most projects begin when a business
need is identified or a potential new market or service is discovered. Stakeholders
from the business community (e.g., business managers, marketing people, product

Why is it

difficult
to gain a dear
understanding
of what the

customer wants?

CHAPTER 7 REQUIREMENTS ENGINEERING 177

managers) define a business case for the idea, try to identify the breadth and depth
of the market, do a rough feasibility analysis, and identify a working description of
the project’s scope. All of this information is subject to change (a likely outcome), but
it is sufficient to precipitate discussions with the software engineering organization.?

At project inception,® software engineers ask a set of context-free questions dis-
cussed in Section 7.3.4. The intent is to establish a basic understanding of the prob-
lem, the people who want a solution, the nature of the solution that is desired, and
the effectiveness of preliminary communication and collaboration between the cus-
tomer and the developer.

7.2.2 Elicitation

It certainly seems simple enough—ask the customer, the users, and others what the
objectives for the system or product are, what is to be accomplished, how the sys-
tem or product fits into the needs of the business, and finally, how the system or
product is to be used on a day-to-day basis. But it isn‘t simple—it’s very hard.

Christel and Kang [CRI92] identify a number of problems that help us understand
why requirements elicitation is difficult:

e Problems of scope. The boundary of the system is ill-defined or the
customers/users specify unnecessary technical detail that may confuse,
rather than clarify, overall system objectives.

¢ Problems of understanding. The customers/users are not completely sure
of what is needed, have a poor understanding of the capabilities and limita-
tions of their computing environment, don’t have a full understanding of the
problem domain, have trouble communicating needs to the system engineer,
omit information that is believed to be “obvious,” specify requirements that
conflict with the needs of other customers/users, or specify requirements
that are ambiguous or untestable.

e Problems of volatility. The requirements change over time.

To help overcome these problems, requirements engineers must approach the re-
quirements gathering activity in an organized manner.

7.2.3 Elaboration

The information obtained from the customer during inception and elicitation is ex-
panded and refined during elaboration. This requirements engineering activity fo-
cuses on developing a refined technical model of software functions, features, and
constraints.

2 If a computer-based system is to be developed, discussions begin with system engineering, an ac-
tivity that defines the world-view and domain view (Chapter 6) for the system.

3 Readers of Chapter 3 will recall that the Unified Process defines a more comprehensive “inception
phase” that encompasses the inception, elicitation, and elaboration tasks discussed in this chapter.

178

eA'pwcts

Faboration is a good
thing, but you have to
know when fo stop.
The key is to describe
the problem in @ way
that establishes a firm
base for design. If you
work beyond that
point, you're doing
design.

PART TWO SOFTWARE ENGINEERING PRACTICE

Elaboration is an analysis modeling action (Chapter 8) that is composed of a num-
ber of modeling and refinement tasks. Elaboration is driven by the creation and re-
finement of user scenarios that describe how the end-user (and other actors) will
interact with the system. Each user scenario is parsed to extract analysis classes—
business domain entities that are visible to the end-user. The attributes of each
analysis class are defined and the services* that are required by each class are iden-
tified. The relationships and collaboration between classes are identified and a vari-
ety of supplementary UML diagrams are produced.

The end-result of elaboration is an analysis model that defines the informational,
functional, and behavioral domain of the problem.

7 T
¢ Analysis Modeling

Assume for a moment that you have been
asked to specify all requirements for the
construction of a gourmet kitchen. You know the
dimensions of the room, the location of doors and
windows, and the available wall space.

In order to fully specify what is to be built, you might
list all cabinets and appliances {their manufacturer, model
number, dimensions). You would then specify the
countertops {laminate, granite, eic.), plumbing fixtures,
flooring, and the like. These lists would provide a useful
specification, but they do not provide a complete model of
Qhat you want. To complete the model, you might create a

three-dimensional rendering that shows the position of the
cabinets and appliances and their relationship to one
another. From the model, it would be relatively easy to
assess the efficiency of workflow (a requirement for all
kitchens), and the aesthetic “look” of the room (a personal,
but very important requirement).

We build analysis models for much the same reason
that we would develop a blueprint or 3D rendering for the
kitchen. It is important to evaluate the system’s components
in relationship to one another, to determine how
requirements fit into this picture, and fo assess the
“qesthetics” of the system as it has been conceived.

/

Gpwcte

There should be no
winner and no loser in
an effective negotic-
fion. Both sides win
because a “deal” that
both can five with is
solidified.

7.2.4 Negotiction

It isn't unusual for customers and users to ask for more than can be achieved, given
limited business resources. It is also relatively common for different customers or
users to propose conflicting requirements, arguing that their version is “essential for
our special needs.”

The requirements engineer must reconcile these conflicts through a process of
negotiation. Customers, users, and other stakeholders are asked to rank require-
ments and then discuss conflicts in priority. Risks associated with each require-
ment are identified and analyzed (see Chapter 25 for details). Rough “guestimates”
of development effort are made and used to assess the impact of each requirement
on project cost and delivery time. Using an iterative approach, requirements are
eliminated, combined, and/or modified so that each party achieves some measure
of satisfaction.

4 The terms operations and methods are also used.

POINT
The formality and
format of o
specification varies
with the size ond the
complexity of the
software to be built.

anc:‘

A key concern during
requirements validation
is consistency. Use the
analysis model fo
ensure that require-
ments have been
consistently stated.

CHAPTER 7 REQUIREMENTS ENGINEERING 179

7.2.5 Specification

In the context of computer-based systems (and software), the term specification
means different things to different people. A specification can be a written docu-
ment, a set of graphical models, a formal mathematical model, a collection of usage
scenarios, a prototype, or any combination of these.

Some suggest that a “standard template” [SOM97] should be developed and used for
a specification, arguing that this leads to requirements that are presented in a consis-
tent and therefore more understandable manner. However, it is sometimes necessary
to remain flexible when a specification is to be developed. For large systems, a written
document, combining natural language descriptions and graphical models may be the
best approach. However, usage scenarios may be all that are required for smaller prod-
ucts or systems that reside within well-understood technical environments.

The specification is the final work product produced by the requirements engi-
neer. It serves as the foundation for subsequent software engineering activities. It
describes the function and performance of a computer-based system and the con-
straints that will govern its development.

7.2.6 Validation

The work products produced as a consequence of requirements engineering are as-
sessed for quality during a validation step. Requirements validation examines the
specification to ensure that all software requirements have been stated unambigu-
ously; that inconsistencies, omissions, and errors have been detected and corrected:
and that the work products conform to the standards established for the process, the
project, and the product.

The primary requirements validation mechanism is the formal technical review
(Chapter 26). The review team that validates requirements includes software engi-
neers, customers, users, and other stakeholders who examine the specification look-
ing for errors in content or interpretation, areas where clarification may be required,
missing information, inconsistencies (a major problem when large products or sys-
tems are engineered), conflicting requirements, or unrealistic (unachievable)
requirements.

f Requirements Validation e s the source (e.g., a person, a regulation, a document)
Checklist of the requirement identified? Has the final statement of
It is often useful to examine each requirement the requirement been examined by or against the
against a set of checklist questions. Here is a small subset original source?
of those that might be asked: o Is the requirement bounded in quantitative terms@

o Are requirements stated clearly? Can they be Are they clearly noted via a cross-reference matrix or

\ misinterpreted?

o What other requirements relate to this requirement?

other mechanism?2 /

180 PART TWO SOFTWARE ENGINEERING PRACTICE

o Does the requirement violate any system domain o s the specification structured in a way that leads to
constraints? easy understanding, easy reference, and easy

o Is the requirement festable? If so, can we specify tests translation into more technical work products?
(sometimes called validation criteria) to exercise the o Has an index for the specification been created?
requirement? o Have requirements associated with performance,

o Is the requirement fraceable to any system model that behavior, and operational characteristics been
has been created? clearly stated? What requirements appear to be

o s the requirement traceable to overall system/product implicit?

\ob]ecﬁves? j

7.2.7 Requirements Management

In Chapter 6, we noted that requirements for computer-based systems change and
that the desire to change requirements persists throughout the life of the system. Re-
quirements management is a set of activities that help the project team identify, con-
trol, and track requirements and changes to requirements at any time as the project
proceeds.® Many of these activities are identical to the software configuration man-
agement (SCM) techniques discussed in Chapter 27.

Requirements management begins with identification. Each requirement is as-
signed a unique identifier. Once requirements have been identified, traceability ta-
bles are developed. Shown schematically in Figure 7.1, each traceability table relates
requirements to one or more aspects of the system or its environment. Among many
possible traceability tables are the following:

Features traceability table. Shows how requirements relate to important cus-
tomer observable system/product features.

Ficure 7.1 Fr—

Generic trace- Specific aspect of the system or its environmen
ability table . R s

Requirement

5 Formal requirements management is initiated only for large projects that have hundreds of identi-
fiable requirements. For small projects, this requirements engineering function is considerably less
formal.

CHAPTER 7 REQUIREMENTS ENGINEERING 181

Source traceability table. Identifies the source of each requirement.
Dependency traceability table. Indicates how requirements are related to

When a system is one another.

large and complex, .])

determining the Subsystem traceability table. Categorizes requirements by the subsystem(s)
connections between that they govern.

requirements con be @

Interface traceability table. Shows how requirements relate to both internal

daunting task. Us .
oonmg y and external system interfaces.

traceability tables to
make the job a bit In many cases, these traceability tables are maintained as part of a requirements

easier. database so that they can be quickly searched to understand how a change in one
requirement will affect different aspects of the system to be built.

SOFTWARE TOOLS

- Requirements Engineering

P’

@ Objective: Requirements engineering tools dictionary/glossary that contains detailed requirements
assist in requirements gathering, requirements descriptions and atfributes.

modeling, requirements management, and requirements OnYourMark Pro, developed by Omni-Vista {www.

validation. omni-vista.com), builds a requirements

database, establishes relationships between
requirements, and allows users to analyze the
relationship between requirements and
schedules/costs.

Rational RequisitePro, developed by Rational Software
(www.rational.com), allow users to build a requirements

Mechanics: Tool mechanics vary. In general, requirements
engineering tools build a variety of graphical (e.g., UML)
models that depict the informational, functional, and
behavioral aspects of a system. These models form the basis

for all other activities in the software process.

Representative Tools® database, represent relationships among requirements,
A reasonably comprehensive (and up-to-date) listing of and organize, prioritize, and frace requirements.
requirements engineering tools has been prepared by The ~ RTM, developed by Integrated Chipware

Atlantic Systems Guide, Inc. and can be found at htip:// {www.chipware.com), is a requirements description
www.systemsguild.com/GuildSite/Robs/retools. html. and traceability tool that also supports certain aspects
Requirements modeling tools are discussed in Chapter 8. of change control and test management.

Tools noted below focus on requirements management. .
s °q 9 it should be noted that many requirements management

EasyRM, developed by Cybernetic Intelligence GmbH tasks can be performed using a simple spreadsheet or a
k(www.easy-rm.com), builds a project-specific small database system. J

In an ideal setting, customers and software engineers work together on the same
team.” In such cases, requirements engineering is simply a matter of conducting
meaningful conversations with colleagues who are well-known members of the
team. But reality is often quite different.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

7 This approach is recommended for all projects and is an integral part of the agile software devel-
opment philosophy.

182

>
o,
POINT
A stakeholder is
ariyone who has o
direct interest in or
benefits from the
system that is to be
developed.

PART TWO SOFTWARE ENGINEERING PRACTICE

Customer(s) may be located in a different city or country, may have only a vague
idea of what is required, may have conflicting opinions about the system to be built,
may have limited technical knowledge, and limited time to interact with the require-
ments engineer. None of these things are desirable, but all are fairly common, and the
software team is often forced to work within the constraints imposed by this situation.

In the sections that follow, we discuss the steps required to initiate requirements
engineering—to get the project started in a way that will keep it moving forward to-
ward a successful solution.

7.3.1 Identitying the Stakeholders

Sommerville and Sawyer [SOM97] define a stakeholder as “anyone who benefits in a
direct or indirect way from the system which is being developed.” We have already
identified the usual suspects: business operations managers, product managers,
marketing people, internal and external customers, end-users, consultants, product
engineers, software engineers, support and maintenance engineers, and others.
Every stakeholder has a different view of the system, achieves different benefits
when the system is successfully developed, and is open to different risks if the de-
velopment effort should fail.

At inception, the requirements engineer should create of list of people who will
contribute input as requirements are elicited (Section 7.4). The initial list will grow
as stakeholders are contacted because every stakeholder will be asked: “Who else
do you think | should taik to?”

7.3.2 Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be
explored from many different points of view. For example, the marketing group is in-
terested in functions and features that will excite the potential market, making the
new system easy to sell. Business managers are interested in a feature set that can
be built within budget and that will be ready to meet defined market windows. End-
users may want features that are familiar to them and that are easy to learn and use.
Software engineers may be concerned with functions that enable the infrastructure
supporting more marketable functions and features. Support engineers may focus on
the maintainability of the software. ‘

: "fuﬂﬁm stokeholders in o room and ask them what kind of system they want. You're likely to get four or more
 difforent pinions.”

Avuthor vnknown

Each of these constituencies (and others) will contribute information to the re-
quirements engineering process. As information from multiple viewpoints is col-
lected, emerging requirements may be inconsistent or may conflict with one another.
The job of the requirements engineer is to categorize all stakeholder information (in-

CHAPTER 7 REQUIREMENTS ENGINEERING 183

cluding inconsistent and conflicting requirements) in a way that will allow decision
makers to choose an internally consistent set of requirements for the system.

7.3.3 Working toward Collaboration

Throughout earlier chapters, we have noted that customers (and other stakeholders)
should collaborate among themselves (avoiding petty turf battles) and with software
engineering practitioners if a successful system is to result. But how is this collabo-
ration accomplished?

The job of the requirements engineer is to identify areas of commonality (i.e., re-
quirements on which all stakeholders agree) and areas of conflict or inconsistency
(i.e., requirements that are desired by one stakeholder but conflict with the needs of
another stakeholder). 1t is, of course, the latter category that presents a challenge.

Using “Priority Points”

One way of resolving conflicting importance of each {from his or her viewpoint) by
requirements and at the same time better spending one or more priority points on it. Points spent
understanding the relative importance of all cannot be reused. Once a stakeholder’s priority points
requirements is fo use a “voting” scheme based on are exhausted, no further action on requirements can be
priority points. All stakeholders are provided with some taken by that person. Overall points spent on each
number of priority points that can be “spent” on any requirement by all stakeholders provide an indication of
number of requirements. A list of requirements is the overall importance of each requirement.
@sented and each stakeholder indicates the relative j

Collaboration does not necessarily mean that requirements are defined by com-
mittee. In many cases, stakeholders collaborate by providing their view of require-
ments, but a strong “project champion” (e.g., a business manager or a senior
technologist) may make the final decision about which requirements make the cut.

7.3.4 Asking the First Questions
Earlier in this chapter, we noted that the questions asked at the inception of the proj-
ect should be “context free” [GAU89]. The first set of context-free questions focuses
on the customer and other stakeholders, overall goals, and benefits. For example,
the requirements engineer might ask:

e Who is behind the request for this work?

e Who will use the solution?

e What will be the economic benefit of a successful solution?

o Is there another source for the solution that you need?
These questions help to identify all stakeholders who will have interest in the soft-

ware to be built. In addition, the questions identify the measurable benefit of a suc-
cessful implementation and possible alternatives to custom software development.

184

will help you gain

understonding of
the problem?

PART TWO SOFTWARE ENGINEERING PRACTICE

~Mﬁshnnl|ofﬂleumm"

The next set of questions enables the software team to gain a better understand-
ing of the problem and allows the customer to voice his or her perceptions about a
solution:

e How would you characterize “good” output that would be generated by a
successful solution?
e What problem(s) will this solution address?

o Can you show me (or describe) the business environment in which the
solution will be used?

o Will special performance issues or constraints affect the way the solution is
approached?

The final set of questions focuses on the effectiveness of the communication ac-
tivity itself. Gause and Weinberg [GAUB89] call these “meta-questions” and propose
the following (abbreviated) list:

e Are you the right person to answer these questions? Are your answers
“official”?

Are my questions relevant to the problem that you have?

Am I asking too many questions?
e Can anyone else provide additional information?

¢ Should I be asking you anything else?

4 } for five minutes; he who does not ask a questi isn&bt

These questions (and others) will help to “break the ice” and initiate the communi-
cation that is essential to successful elicitation. But a question and answer meeting
format is not an approach that has been overwhelmingly successful. In fact, the Q&A
session should be used for the first encounter only and then replaced by a require-
ments elicitation format that combines elements of problem solving, negotiation,
and specification. An approach of this type is presented in Section 7.4.

The question and answer format described in Section 7.3.4 is useful at inception, but
itis not an approach that has been overwhelmingly successful for more detailed elic-
itation of requirements. In fact, the Q&A session should be used for the first en-
counter only and then replaced by a requirements elicitation format that combines

What are

the basic
guidelines for
conducting a
collaborative
requirements
gathering
meeting?

CHAPTER 7 REQUIREMENTS ENGINEERING 185

elements of problem solving, elaboration, negotiation, and specification. An ap-
proach of this type is presented in the next section.

7.4.1 Collaborative Requirements Gathering

In order to encourage a collaborative, team-oriented approach to requirements gath-
ering, a team of stakeholders and developers work together to identify the problem,
propose elements of the solution, negotiate different approaches, and specify a pre-
liminary set of solution requirements [ZAH90}.2

Many different approaches to collaborative requirements gathering have been pro-
posed. Each makes use of a slightly different scenario, but all apply some variation
on the following basic guidelines:

¢ Meetings are conducted and attended by both software engineers and
customers (along with other interested stakeholders).

o Rules for preparation and participation are established.

e An agenda is suggested that is formal enough to cover all important points
but informal enough to encourage the free flow of ideas.

o A “facilitator” (can be a customer, a developer, or an outsider) controls the
meeting.

o A “definition mechanism” (can be work sheets, flip charts, or wall stickers or
an electronic bulletin board, chat room, or virtual forum) is used.

e The goal is to identify the problem, propose elements of the solution,
negotiate different approaches, and specify a preliminary set of solution
requirements in an atmosphere that is conducive-to the accomplishment of
the goal.

To better understand the flow of events as they occur, we present a brief scenario
that outlines the sequence of events that lead up to the requirements gathering meet-
ing, occur during the meeting, and follow the meeting.

y majority of project effort—not implemenfing of

During inception (Section 7.3) basic questions and answers establish the scope of
the problem and the overall perception of a solution. Out of these initial meetings,
the stakeholders write a one- or two-page “product request.” A meeting place, time,
and date are selected and a facilitator is chosen. Members of the software team and
other stakeholder organizations are invited to attend. The product request is distrib-
uted to all attendees before the meeting date.

8 This approach is sometimes called facilitated application specification techniques (FAST).

186

Joint Apphication
Development (JAD) is
a populor technique
for requirements
gathering. A good
descripfion can

be found at
www.carolla.

com/wpjod him,

ancs‘

If a system or product
will serve many users,
be absolutely certain
that requirements ore
elicited from a repre-
senfafive cross-section
of users. If only one
user defines all require-
ments, acceptance risk
is high.

PART TWO SOFTWARE ENGINEERING PRACTICE

While reviewing the product request in the days before the meeting, each attendee
is asked to make a list of objects that are part of the environment that surrounds the
system, other objects that are to be produced by the system, and objects that are used
by the system to perform its functions. In addition, each attendee is asked to list ser-
vices (processes or functions) that manipulate or interact with the objects. Finally, lists
of constraints (e.g., cost, size, business rules) and performance criteria (e.g., speed, ac-
curacy) are also developed. The attendees are informed that the lists are not expected
to be exhaustive but are expected to reflect each person’s perception of the system.

As an example,’ consider an excerpt from a premeeting document written by a
marketing person involved in the SafeHome project. This person writes the following
narrative about the home security function that is to be part of SafeHome:

Our research indicates that the market for home management systems is growing at a
rate of 40 percent per year. The first SafeHome function we bring to market should be the
home security function. Most people are familiar with “alarm systems” so this would be
an easy sell.

The home security function would protect against and/or recognize a variety of un-
desirable “situations” such as illegal entry, fire, flooding, carbon monoxide levels, and
others. It'll use our wireless sensors to detect each situation, can be programmed by the
homeowner, and will automatically telephone a monitoring agency when a situation is
detected.

In reality, others would contribute to this narrative during the requirements gath-
ering meeting, and considerably more information would be available. But even with
additional information, ambiguity would be present, omissions would likely exist,
and errors might occur. For now, the preceding “functional description” will suffice.

The requirements gathering team is composed of representatives from marketing,
software and hardware engineering, and manufacturing. An outside facilitator is to
be used.

Each person develops the lists described previously. Objects described for Safe-
Home might include the control panel, smoke detectors, window and door sensors,
motion detectors, an alarm, an event (a sensor has been activated), a display, a PC,
telephone numbers, a telephone call, and so on. The list of services might include
configuring the system, setting the alarm, monitoring the sensors, dialing the phone,
programming the control panel, and reading the display (note that services act on ob-
jects). In a similar fashion, each attendee will develop lists of constraints (e.g., the
system must recognize when sensors are not operating, must be user-friendly, must
interface directly to a standard phone line) and performance criteria (e.g., a sensor
event should be recognized within one second; an event priority scheme should be
implemented).

9 The SafeHome example (with extensions and variations) is used to illustrate important software en-
gineering methods in many of the chapters that follow. As an exercise, it would be worthwhile to
conduct your own requirements gathering meeting and develop a set of lists for it.

Gpwcs‘

Avoid the impulse to
shoot down a
customer’s idea as
“too costly” or
“impractical.” The idea
here is to negotiate a
list that is acceptable
to all. To do this, you
must keep an open
mind.

CHAPTER 7 REQUIREMENTS ENGINEERING 187

"fmdo not cease fo exist because they are ignored.”

Aldous Huxley :

As the requirements gathering meeting begins, the first topic of discussion is the
need and justification for the new product—everyone should agree that the product
is justified. Once agreement has been established, each participant presents his lists
for discussion. The lists can be pinned to the walls of the room using large sheets of
paper, stuck to the walls using adhesive backed sheets, or written on a wall board.
Alternatively, the lists may have been posted on an electronic bulletin board, at an
internal Web site, or posed in a chat room environment for review prior to the meet-
ing. 1deally, each listed entry should be capable of being manipulated separately so
that lists can be combined, entries can be deleted, and additions can be made. At this
stage, critique and debate are strictly prohibited.

After individual lists are presented in one topic area, a combined list is created by
the group. The combined list eliminates redundant entries, adds any new ideas that
come up during the discussion, but does not delete anything. After combined lists
for all topic areas have been created, the facilitator coordinates discussion. The
combined list is shortened, lengthened, or reworded to properly reflect the product/
system to be developed. The objective is to develop a consensus list in each topic
area (objects, services, constraints, and performance). The lists are then set aside for
later action.

Once the consensus lists have been completed, the team is divided into smaller
subteams; each works to develop mini-specifications for one or more entries on each
of the lists.'® Each mini-specification is an elaboration of the word or phrase con-
tained on a list. For example, the mini-specification for the SaféHome object Control
Panel might be:

The Control Panel is a wall-mounted unit that is approximately 9 x 5 inches in size. The
control panel has wireless connectively to sensors and a PC. User interaction occurs
through a keypad containing 12 keys. A 2 x 2 inch LCD display provides user feedback.
Software provides interactive prompts, echo, and similar functions.

Each subteam then presents its mini-specs to all attendees for discussion. Additions,
deletions, and further elaboration are made. In some cases, the development of
mini-specs will uncover new objects, services, constraints, or performance require-
ments that will be added to the original lists. During all discussions, the team may
raise an issue that cannot be resolved during the meeting. An issues list is maintained
so that these ideas will be acted on later.

After the mini-specs are completed, each attendee makes a list of validation cri-
teria for the product/system and presents her list to the team. A consensus list of

10 Rather than creating mini-specifications, many software teams elect to develop user scenarios
called use-cascs. These are considered in detail in Section 7.5.

188

PART TWO SOFTWARE ENGINEERING PRACTICE

validation criteria is then created. Finally, one or more participants (or outsiders) is
assigned the task of writing a complete draft specification using all inputs from the
meeting.

SAFEHOME

2
o

POINT
QFD defines
requirements in a way
that maximizes

customer safisfaction.

7.4.2 Quality Function Deployment

Quadlity function deployment (QFD) is a technique that translates the needs of the cus-
tomer into technical requirements for software. QFD “concentrates on maximizing
customer satisfaction from the software engineering process [ZUL92].” To accom-
plish this, QFD emphasizes an understanding of what is valuable to the customer and
then deploys these values throughout the engineering process. QFD identifies three
types of requirements [ZUL92]:

Normal requirements. These requirements reflect objectives and goals stated
for a product or system during meetings with the customer. If these requirements
are present, the customer is satisfied. Examples of normal requirements might be
requested types of graphical displays, specific system functions, and defined levels
of performance.

Expected requirements. These requirements are implicit to the product or
system and may be so fundamental that the customer does not explicitly state

Cova

Everyone wanfs to
implement lots of
exciting requirements,
but be careful. That's
how “requirements
creep” sefs in. On the
other hand, excifing
requirements lead fo @
breakthrough product!

WebRef

CHAPTER 7 REQUIREMENTS ENGINEERING 189

them. Their absence will be a cause for significant dissatisfaction. Examples of ex-
pected requirements are ease of human/machine interaction, overall operational
correctness and reliability, and ease of software installation.

Exciting requirements. These requirements reflect features that go beyond
the customer’s expectations and prove to be very satisfying when present. For ex-
ample, word processing software is requested with standard features. The deliv-
ered product contains a number of page layout capabilities that are quite pleasing
and unexpected.

In actuality, QFD spans the entire engineering process [PAR96]. However, many QFD
concepts are applicable to the requirements elicitation activity. We present an
overview of only these concepts (adapted for computer software) in the paragraphs
that follow.

oft there where most it promises.”

In meetings with the customer, function deployment is used to determine the value
of each function that is required for the system. Information deployment identifies
both the data objects and events that the system must consume and produce. These
are tied to the functions. Finally, task deployment examines the behavior of the sys-
tem or product within the context of its environment. Value analysis is conducted to
determine the relative priority of requirements determined during each of the three
deployments.

QFD uses customer interviews and observation, surveys, and examination of his-
torical data (e.g., problem reports) as raw data for the requirements gathering activ-
ity. These data are then translated into a table of requirements—called the customer
voice table—that is reviewed with the customer. A variety of diagrams, matrices, and
evaluation methods are then used to extract expected requirements and to attempt
to derive exciting requirements [BOS91].

7.4.3 User Scenarios

As requirements are gathered, an overall vision of system functions and features be-
gins to materialize. However, it is difficult to move into more technical software en-
gineering activities until the software team understands how these functions and
features will be used by different classes of end-users. To accomplish this, develop-
ers and users can create a set of scenarios that identify a thread of usage for the sys-
tem to be constructed. The scenarios, often called use-cases {JAC92], provide a
description of how the system will be used. Use-cases are discussed in greater detail
in Section 7.5.

190

SAFEHOME

d like to keep things really informal. Tell us
ating perso,n) how you envision

ing): Thats the reason you'd do it . . .

clduaﬂy do this.

. the first thing I'd need

Web swe we'd maintain for all

Vd provide my user id and . . .

ting): The Web page would have
fed, fo guarantee that we're safe

PART TWO SOFTWARE ENGINEERING PRACTICE

user wrll use this coqudﬂy, oke
Vinod: No problem.

a Web site and provlde my user id cmd wo
pQSSWOrdS

Jamie: What if| forget my password?
Facilitator (interrupting): Good point, Jamie; & t
let's not address that now. We'll make a note of that ar
call it an “exception.” I'm sure there'll be others. -

Marketing person: Affer | enter the posswards
screen representing all SafeHome functions will appear.
I'd select the home security function. The system might

request that [verify who 1 am, say by asking for my -
address or phone number or something. It would ﬂaen
display a picture of the security system control '
along with a list of functions that I can pe
system, disarm the system, disarm one or me
suppose it might-also allow me fo reconfigu
zones and other things like that, but4'm no

[As the marketing person continues talking, Doug)
pious notes. These form the basis for the first informa

case scengrio. Alternatively, the me&kehng person
have been asked to write the scenario, but th«s wi
done outside the meeting.}

7.4.4 Elicitation Work Products

The work products produced as a consequence of requirements elicitation will vary
depending on the size of the system or product to be built. For most systems, the

work products include:

What

“'® information
is produced as a
consequence of
requirements
gathering?

requirements elicitation.

e A statement of need and feasibility.
e A bounded statement of scope for the system or product.

o Alist of customers, users, and other stakeholders who participated in

%
e,

POINT
Use-cases are defined
from an actor’s point
of view. An actor is 0
role that people
(users) or devices play
as they inferact with
the software.

An excellent poper on
use-coses con be
downlooded from
com/products/
whitepapers/100
622 fsp.

CHAPTER 7 REQUIREMENTS ENGINEERING 191

e A description of the system’s technical environment.

e Alist of requirements (preferably organized by function) and the domain
constraints that apply to each.

e A set of usage scenarios that provide insight into the use of the system or
product under different operating conditions.

e Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in re-
quirements elicitation.

In a book that discusses how to write effective use-cases, Alistair Cockburn
[COCO1] notes that “a use-case captures a contract . . . [that] describes the system’s
behavior under various conditions as the system responds to a request from one of
its stakeholders.” In essence, a use-case tells a stylized story about how an end-
user (playing one of a number of possible roles) interacts with the system under a
specific set of circumstances. The story may be narrative text, an outline of tasks
or interactions, a template-based description, or a diagrammatic representation.
Regardless of its form, a use-case depicts the software or system from the end-
user’s point of view.

The first step in writing a use-case is to define the set of “actors” that will be in-
volved in the story. Actors are the different people (or devices) that use the system or
product within the context of the function and behavior that is to be described. Ac-
tors represent the roles that people (or devices) play as the system operates. Defined
somewhat more formally, an actor is anything that communicates with the system
or product and that is external to the system itself. Every actor has one or more goals
when using the system.

It is important to note that an actor and an end-user are not necessarily the
same thing. A typical user may play a number of different roles when using a sys-
tem, whereas an actor represents a class of external entities (often, but not always,
people) that play just one role in the context of the use-case. As an example, con-
sider a machine operator (a user) who interacts with the control computer for a
manufacturing cell that contains a number of robots and numerically controlled
machines. After careful review of requirements, the software for the control com-
puter requires four different modes (roles) for interaction: programming mode, test
mode, monitoring mode, and troubleshooting mode. Therefore, four actors can be
defined: programmer, tester, monitor, and troubleshooter. In some cases, the ma-
chine operator can play all of these roles. In others, different people may play the
role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are
identified during the first iteration. It is possible to identify primary actors [JAC92]

192

What do |

need to
know in order to
develop an
effective use-
case?

PART TWO SOFTWARE ENGINEERING PRACTICE

during the first iteration and secondary actors as more is learned about the system.
Primary actors interact to achieve required system function and derive the intended
benefit from the system. They work directly and frequently with the software. Sec-
ondary actors support the system so that primary actors can do their work.

Once actors have been identified, use-cases can be developed. Jacobson [JAC92]
suggests a number of questions'' that should be answered by a use-case:

e Who is the primary actor(s), the secondary actor(s)?

e What are the actor’s goals?

e What preconditions should exist 4before the story begins?

o What main tasks or functions are performed by the actor?

e What exceptions might be considered as the story is described?

e What variations in the actor’s interaction are possible?

e What system information will the actor acquire, produce, or change?

e Will the actor have to inform the system about changes in the external envi-
ronment?

+ What information does the actor desire from the system?

e Does the actor wish to be informed about unexpected changes?

Recalling basic SafeHome requirements, we define three actors: the homeowner
(a user), a configuration manager (likely the same person as homeowner, but
playing a different role), sensors (devices attached to the system), and the moni-
toring subsystem (the central station that monitors the SafeHome home security
function). For the purposes of this example, we consider only the homeowner ac-
tor. The homeowner interacts with the home security function in a number of differ-
ent ways using either the alarm control panel or a PC:

e Enters a password to allow all other interactions.

o Inquires about the status of a security zone.

o Inquires about the status of a sensor.

e Presses the panic button in an emergency.

e Activates/deactivates the ‘security system.

Considering the situation in which the homeowner uses the control panel, the basic
use-case for system activation follows:'?

11 jacobson'’s questions have been extended to provide a more complete view of use-case content.
12 Note that this use-case differs from the situation in which the system is accessed via the Internet.
In this case, interaction occurs via the control panel, not the GUI provided when a PC is used.

CHAPTER 7 REQUIREMENTS ENGINEERING

193

SafeHome
control panel

CovaB

Use-cases are offen
written informally.
However, use the
template shown here
to ensure that you've
addressed all key
issues.

SAFEHOME

i B
1 away

Ui stay mux

alarm instant

Ch.eCk bypass mstant code chime
fire not ready

..[Z]

read
armed power
55 Hae
pamc

1. The homeowner observes the SafeHome control panel (Figure 7.2) to determine if the
system is ready for input. If the system is not ready a not ready message is displayed on
the LCD display, and the homeowner must physically close windows/doors so that the
not ready message disappears. (A not ready message implies that a sensor is open; i.e.,
that a door or window is open.)

2. The homeowner uses the keypad to key in a four-digit password. The password is
compared with the valid password stored in the system. If the password is incorrect,
the control panel will beep once and reset itself for additional input. If the password is
correct, the control panet awaits further action.

3. The homeowner selects and keys in stay or away (see Figure 7.2) to activate the sys-
tem. Stay activates only perimeter sensors (inside motion detecting sensors are deac-
tivated). Away activates all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

The basic use-case presents a high-level story that describes the interaction between
the actor and the system.

In many instances, use-case are further elaborated to provide considerably more
detail about the interaction. For example, Cockburn [COCO1]suggests the following
template for detailed descriptions of use-cases:

Use-case:
Primary actor:
Goal in context:

Preconditions:

InitiateMonitoring
Homeowner.

To set the system to monitor sensors when the homeowner
leaves the house or remains inside.

System has been programmed for a password and to recognize
various sensors.

194

@
POINT

Fach use-case can

be assessed by

stakeholders, and the

relative priority for

each can be assigned.

PART TWO SOFTWARE ENGINEERING PRACTICE

Trigger: The homeowner decides to “set” the system, i.e., to turn on the
alarm functions.

Scenario:

1. Homeowner: observes control panel.

2. Homeowner: enters password.

3. Homeowner: selects “stay” or “away.”

4. Homeowner: observes red alarm light to indicate that SafeHome has been armed.
Exceptions:

1. Control panel is not ready: homeowner checks all sensors to determine which are
open; closes them.

2. Password is incorrect (control panel beeps once): homeowner reenters correct pass-
word.

3. Password not recognized: monitoring and response subsystem must be contacted to
reprogram password.

4. Stay is selected: control panel beeps twice and a stay light is lit; perimeter sensors are
activated.

5. Away is selected: control panel beeps three times and an away light is Iit; all sensors
are activated.

Priority: Essential, must be implemented.
When available: First increment.

Frequency of use: Many times per day.

Channel to actor: Via control panel interface.

Secondary actors: Support technician, sensors.
Channels to secondary actors:
Support technician: phone line.
Sensors: hardwired and wireless interfaces.
Open issues:

1. Should there be a way to activate the system without the use of a password or with an
abbreviated password?

2. Should the control panel display additional text messages?

3. How much time does the homeowner have to enter the password from the
time the first key is pressed?

4. Is there a way to deactivate the system before it actually activates?

Use-cases for other homeowner interactions would be developed in a similar man-
ner. It is important to note that each use-case must be reviewed with care. If some
element of the interaction is ambiguous, it is likely that a review of the use-case will
uncover the problem.

